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Abstract Histone gene expression is restricted to the S-phase of the cell cycle. Control is at multiple levels and is 
mediated by the integration of regulatory signals in response to cell cycle progression and the onset of differentiation. 
The H4 gene promoter is organized into a series of independent and overlapping regulatory elements which exhibit 
selective, phosphorylation-dependent interactions with multiple transactivation factors. The three-dimensional organi- 
zation of the promoter and, in particular, i ts  chromatin structure, nucleosome organization, and interactions with the 
nuclear matrix may contribute to interrelationships of activities at multiple promoter elements. Molecular mechanisms 
are discussed that may participate in the coordinate expression of S-phase-specific core and H I  histone genes, together 
with other genes functionally coupled with DNA replication. 
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INTRODUCTION 

Histone protein synthesis is restricted to the 
S-phase of the cell cycle supporting the require- 
ment of histone proteins for the ordered assem- 
bly of newly replicated DNA into nucleosomes 
and higher order chromatin structure within 
the nucleus. Molecular mechanisms associated 
with regulation of histone gene expression can- 
not be defined as isolated components of gene 
regulation. Rather, when understood within the 
context of the integrated cascade of events that 
are associated with growth control, subtle param- 
eters operative in transcription of histone genes 
provide insight into the diverse physiological 
regulatory mechanisms mediating responsive- 
ness to  a broad spectrum of cellular require- 
ments for stringent control of the proliferative 
process. [Pardee, 1989; Stein and Lian, 1992; 
Hofbauer and Denhardt, 1991; Zambetti et al., 
1991; Baserga and Rubin, 19931. 
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This prospect is not inclusive and for a more 
comprehensive treatment of histone gene regu- 
lation the reader is directed towards several 
excellent reviews [Stein et al., 1984; Marzluff et 
al., 1988; Osley et al., 1991; Heintz et al., 19911. 
Instead, we will focus on the contributions of 
activities at a series of promoter regulatory ele- 
ments to transcription of the cell cycle regulated 
histone genes. Emphasis will be on the relation- 
ships between gene organization and biological 
function, where sequence-specific interactions 
of cognate transcription factors with multiple 
regulatory elements of the modularly organized 
histone gene promoter accompany and/or are 
functionally related to cell cycle progression and 
the onset of differentiation. Additionally, the 
participation of nuclear architecture in regulat- 
ing the transcriptional properties of the histone 
genes will be considered. We will address the 
involvement of modifications in chromatin struc- 
ture, nucleosome organization, and association 
of histone genes with the nuclear matrix, as a 
means of integrating activities at independent 
promoter domains. Fundamental properties of 
histone gene transcriptional regulation will be 
discussed in relation to consequences of abro- 
gated growth control in tumor cells. 
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Fig. 1. Regulation of a cell-growth-controlled histone gene 
during growth and differentiation. a: Schematic representation 
of the cell cycle (GI,  S, Cz, and mitosis), indicating how the 
pathway is associated with the post-proliferative onset of differ- 
entiation (proliferation-differentiation transition). b: Definition 
of the principal biochemical parameters of histone gene expres- 
sion, indicating the restriction of histone protein synthesis and 
the representation of histone mRNA to S-phase cells (DNA 
synthesis). Constitutive transcription of histone genes is evident 
throughout the cell cycle with an enhanced transcriptional level 

HISTONE GENE EXPRESSION IS CONTROLLED 
AT MULTIPLE LEVELS 

Biological requirements for histone proteins 
are reflected by two functional classes of genes 
in the multi-gene family of histone coding se- 
quences. The cell cycle regulated histone genes 
are expressed during S-phase to support DNA 
replication [Sierra et al., 1983; Kroeger et al., 
1987; Pauli et al., 1987; van Wijnen et al., 1989; 
Dailey et al., 1988; Lee et al., 1991; Ramsey- 
Ewing et al., in press]. In contrast the cell cycle 
independent histone genes, also referred to  as 
“variant” or “differentiation specific,” are ex- 
pressed throughout the cell cycle or are tran- 

during the early part of S-phase. These results establish the 
combined contribution of transcription and mRNA stability to 
the S-phase-specific regulation of histone biosynthesis in prolif- 
erating cells, with histone mRNA levels as the rate-limiting step. 
In contrast, the completion of proliferative activity at the onset 
of differentiation is mediated by transcriptional down-regula- 
tion of histone gene expression. Evidence for this is the parallel 
decline in rate of H4 transcription and cellular mRNA levels (not 
shown). A, transcription (histone); 0, histone mRNA; 0, DNA 
synthesis; 0, histone protein synthesis. 

siently expressed post-proliferatively at  the on- 
set of differentiation [Hatch et al., 1990; Wells et 
al., 1987; Shalhoub et al., 1989; Collart et al., 
1991; Kardalinou et al., 19931. Competency for 
expression of the variant histone genes in non 
S-phase cells is at least in part due to promoter 
regulatory sequences which are controlled by 
cell cycle independent transcription factors. Ad- 
ditionally, stability of transcripts from these 
genes is not dependent on ongoing DNA synthe- 
sis. The role of these variants may be to  allow 
biosynthesis of histone proteins in the absence 
of DNA synthesis, thus enabling modifications 
in chromatin structure to  be made, which sup- 
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port the initial expression of tissue-specific phe- 
notypic properties post-proliferatively . 

We will initially confine our considerations to  
a cell cycle regulated human H4 histone gene 
designated H4-F0108 which has been studied 
extensively with respect to  expression and mech- 
anisms that are operative in control [Ramsey- 
Ewing et al., in press; Wright et al., submitted; 
Sierra et al., 1983; Kroeger et al., 1987; Pauli et 
al., 1987; van Wijnen et al., 19891. Later, we will 
assess the potential for coordinate control of cell 
cycle regulated core (H4, H3, H2a, and H2b) and 
H1 histone genes, together with other genes 
functionally coupled to  DNA synthesis. 

Post-Transcriptional Control 

The five principal classes of cell cycle regu- 
lated histone genes are controlled at multiple 
levels. Cellular levels of histone mRNA are the 
rate limiting parameter for histone biosynthesis 
(Fig. 1). In proliferating normal diploid and 
transformed cells, histone mRNA and protein 
synthesis are confined to the S-phase of the cell 
cycle, with a parallel relationship between cellu- 
lar histone mRNA content, the rate of histone 
protein synthesis, and DNA replication [Plumb 
et al., 1983a,bl. Half-life determinations of his- 
tone mRNA induced at different times during 
the cell cycle directly indicate increased stability 
during S-phase [Morris et al., 19911. Histone 
mRNA is destabilized selectively at the natural 
completion of S-phase and following inhibition 
of DNA synthesis [Stein et al., 1984; Marzluff et 
al., 1988; Osley et al., 1991; Heintz et al., 19911, 
possibly by autonomous regulation [Stein and 
Stein, 1984; Peltz et al., 1991; Morris et al., 
19911. Interestingly, the coupling of histone 
mRNA stability with DNA synthesis appears, at 
least in part, to be regulated by association of 
histone mRNA-containing polyribosomes with 
the cytoskeleton [Zambetti et al., 1987, 19901. 
The non-random distribution of histone mRNA 
in the cytoplasm may contribute to stability 
and/or translatability of histone mRNA [Pauli 
et al., 19891. Rate of histone mRNA processing 
within the nucleus may contribute further to 
cellular histone mRNA levels during the cell 
cycle [Harris et al., 19911. 

Transcriptional Control 

Histone gene transcription occurs throughout 
the cell cycle in proliferating cells, with an up- 
regulation at the onset of S-phase. Cell cycle 
dependent transcriptional and post-transcrip- 

tional control are both involved in determining 
the level of expression. The extent to  which 
transcriptional and post-transcriptional control 
contribute to histone gene expression in re- 
sponse to biological activity of cells can be modi- 
fied. A dramatic illustration is the switch in 
regulatory mechanisms that are operative dur- 
ing differentiation. This is particularly evident 
at a key transition point early in the developmen- 
tal sequence of genes expressed during osteo- 
blast, monocyte and adipocyte differentiation 
(Fig. 1) when proliferation is completed and key 
components of tissue-specific gene expression 
are initiated. During proliferation, both tran- 
scription and mRNA stability modulate histone 
gene expression, whereas post-proliferatively, 
down-regulation of the histone genes is tran- 
scriptionally controlled [Shalhoub et al., 1989; 
Owen et al., 1990a,b; Collart et al., 1988; Stein 
et al., 1989, 19901. 

INDEPENDENT AND OVERLAPPING 
PROMOTER ELEMENTS INTERACT WITH 

HISTONE GENE TRANSCRIPTION 
MULTI-PARTITE FACTORS TO REGULATE 

Transcriptional control of histone gene expres- 
sion is mediated by a modularly organized series 
of 5’-regulatory sequences that interact with 
multiple sequence-specific promoter binding fac- 
tors [reviewed in Stein et al., 1992; Sierra et al., 
1983; Kroeger et al., 1987; Pauli et al., 1987; van 
Wijnen et al., 1989; Dailey et al., 1988; Lee et al., 
1991; van Wijnen et al., 1991a; Sharma et al., 
van Wijnen et al., 1992; 1989; LaBella et al., 
1989; Harvey et al., 1982; Hinkley and Perry, 
19911. Further evidence for this complex regula- 
tion is provided by the observations that several 
promoter elements interact with heteromeric 
factors andlor represent composite protein- 
DNA interaction sites, and that both positive 
and negative elements may contribute to  levels 
of transcription. Competence for transcription 
and the extent to which the histone genes are 
transcribed are determined by selective occu- 
pancy of these positive and negative promoter 
elements by cognate transcription factors. The 
interaction of these factors with regulatory se- 
quences varies under different biological circum- 
stances. Occupancy of histone gene promoter 
elements may be regulated partly by biosynthe- 
sis of transcription factors. Additionally, recruit- 
ment of these factors involves synergistic and 
mutually exclusive interactions that are partly 
regulated by phosphorylation and protein- 
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protein complex formation [Roberts et al., 1991; 
van Wijnen et al., 1991b; van der Houven van 
Oordt et al., 19921. Here, cooperativity at the 
level of protein-DNA interactions involving mul- 
tiple promoter elements may contribute to tran- 
scriptional control. 

Focusing on the H4 gene (designated F01081, 
several classes of regulatory sequences, that each 
reflect a different component of control, indepen- 
dently and collectively establish the extent to 
which the gene is transcribed in response to a 
series of cellular transcriptional parameters as- 
sociated with growth control. Regulation of tran- 
scription can therefore be viewed as being rate- 
limited by the cellular representation of any one 
of several factors or by the availability of specific 
complexes involved in activities at multiple regu- 
latory elements. Transcriptional activity of the 
H4-F0108 gene depends on cellular levels of 
ubiquitous transcription factors (e.g., Spl and 
ATF) reflecting overall cellular transcriptional 
capacity, factors that interact with all cell-cycle- 
regulated core and H1 histone genes, and fac- 
tors that exhibit recognition specificity for indi- 
vidual histone genes or subsets of the histone 
multigene family. 

Figure 2 is a schematic representation of the 
regulatory organization of the initial 1.0 kb of 
the H4-F0108 gene promoter. Whereas this re- 
gion, which is devoid of repetitive elements 
[Collart et al., 19851, contains the minimal se- 
quences required for regulated expression, the 
functional limits of the H4-F0108 gene appear 
to  extend considerably upstream. Indeed, cis- 
acting elements up to  -6.5 kb may influence 
developmental expression of the H4-F0108 gene 
in vivo in transgenic animals and in cell lines 
competent for differentiation isolated from trans- 
genic mice [Helms et al., 1987; van Wijnen et al., 
1991c; Gerbaulet et al., 19921. We have estab- 
lished two domains of in vivo protein-DNA inter- 
actions for the H4-F0108 gene [Pauli et al., 
19871 in the intact cell at single-nucleotide reso- 
lution. These have been designated H4-Site I (nt 
- 156 to - 113) and H4-Site I1 (nt -97 to -47). 

The H4-Site I promoter domain is a bipartite 
cis-activating element that interacts distally with 
a member of the ATF/AP-1 family of transcrip- 
tion factors, and proximally with a GC-box- 
binding protein, histone nuclear factor-C 
(HiNF-C) [van Wijnen et al., 1989; Wright et al., 
submitted], most likely identical to  Spl. Both 

factors are capable of synergistically mediating a 
5-fold stimulation of transcription. 

The H4-Site I1 domain represents a mosaic of 
functional recognition sequences that contrib- 
ute to H4 gene transcription. H4-Site I1 is a 
multi-partite protein-DNA interaction site for 
sequence-specific factors HiNF-D, HiNF-M, and 
HiNF-P [van Wijnen et al., 1991b1, with HiNF-P 
being similar to H4-TF2 [Dailey et al., 19861. 
The proximal region of H4-Site I1 spans a TATA 
motif and is sufficient to mediate accurate tran- 
scription initiation in vitro, but not in vivo 
[Sierra et al., 19831, presumably by interaction 
with initiation factor TFII-D. However, the dis- 
tal region of H4-Site I1 influences transcrip- 
tional competency, as well as the timing and 
extent of H4 histone mRNA synthesis in vivo 
[Ramsey-Ewing et al., in press; Kroeger et al., 
19871. This Site I1 distal region contains several 
distinct sequence motifs that either stimulate 
the basal level of H4 gene transcription (C-box) 
or influence periodic levels of transcription (M- 
box) [Ramsey-Ewing et al., in press]. 

The distal-activating elements, H4-Sites I11 
and IV, encompass regions that stimulate tran- 
scription in vivo and interact with the hetero- 
meric nuclear factors H4UA-1 [van der Houven 
van Oordt et al., 19921 and H4UA-3 (Wright, 
unpublished data), respectively. Additionally, 
H4-Site IV overlaps with a putative nuclear 
matrix attachment site spanning nucleotides 
-730 to -589 [Dworetzky et al., 19921. This 
element interacts with a sequence-specific 
nuclear matrix protein (NMP-11, an ATF tran- 
scription factor, and may influence expression of 
the H4 gene promoter by transient anchorage to 
the nuclear matrix. 

PROTEIN-DNA AND PROTEIN-PROTEIN 
INTERACTIONS AT HISTONE GENE 

PROMOTER ELEMENTS DURING THE CELL 

ONSET OF DIFFERENTIATION 
CYCLE AND POST-PROLIFERATIVELY AT THE 

Insight into transcriptional control of histone 
gene expression is provided by modifications in 
the interactions of promoter-binding factors with 
the initial 1.0 kb of the H4-F0108 gene pro- 
moter at Sites I, 11,111, and IV. Here, the extent 
of histone gene transcription can be related to  
responsiveness of multiple physiologic regula- 
tory parameters governing cell cycle progression 
and differentiation. 
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Fig. 2. Regulatory organization of the H4-FO108 gene pro- 
moter. The overall modular organization of the promoter (a) i s  
reflected by distal (Sites IV and 111) and proximal (Sites I and II) 
domains (boxes) that are interspersed with several nuclease 
hypersensitive regions (inverted triangles). Multiple promoter 
binding proteins interact with each site (e.g., HiNF-D, HiNF-M, 
HiNF-P, and TF-IID at Site 11) and determine the extent and 
timing of histone gene transcription (arrow indicates transcrip- 
tional start site). b: Sites I and I1 (middle panels) are protein/ 
DNA interaction domains established in the intact cell in vivo 
(black bars: genomic DNasel footprint; black dots genomic 
dimethyl sulphate fingerprint) which each span a series of 
sequence-motifs (eg ,  M-, C- and P-boxes underneath se- 
quence) and coincide with several in vivo and in vitro transcrip- 

Cell Cycle Control 

Cell cycle regulation of histone gene transcrip- 
tion resides at Site 11. Holthuis et al. [1990] have 
established that HiNF-D is cell-cycle-regulated, 
restricted to S-phase in normal diploid rat osteo- 
blasts and human diploid fibroblasts. However, 
HiNF-D binding activity is only modulated dur- 
ing the cell cycle of cells with normal, untrans- 

tional elements (e.g., R- and T-elements). The parameters influ- 
enced by these elements are as follows: cap-site initiation of 
mRNA (box with caret marks), basal levels of transcription 
(striped boxes), and/or the cell cycle periodicity of histone gene 
transcription (M). Interactions with promoter-binding proteins 
also occur within these elements; minimal recognition se- 
quences and methylation-interference protein-DNA contacts 
(shaded vertical ovals) are shown. c: Sites 111 and IV are distal- 
activating protein-DNA interaction domains (same symbols as 
for Sites I and II), with Site IV being a component of a putative 
nuclear matrix attachment site. ATF, activating transcription 
factor; HiNF, histone nuclear factor; NMP, nuclear matrix pro- 
tein. 

formed cell growth characteristics [Holthuis et 
al., 19901. This is consistent with deregulation 
of cell-cycle-dependent binding activity of this 
factor during neoplastic transformation in tu- 
mor cells where stringent growth control is abro- 
gated. Further insight into the molecular mecha- 
nisms underlying the protein-DNA interactions 
responsible for cell-cycle control is provided by 
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Fig. 3. Modifications in phosphorylation-dependent protein/ 
protein and protein/DNA interactions influencing H4-FO108 
gene transcription during the cell cycle and cessation of prolif- 
eration at the onset of differentiation. Shown here is the postu- 
lated model for the regulation of H4-FO108 gene transcription 
involving differential occupancy of Site II by histone nuclear 
factor-D (HiNF-D), HiNF-M, HiNF-P, and TF-IID during the S 
and C2/M/C1 phases of the cell cycle resulting in basal levels 

results from in vivo analysis of deletion and 
site-directed mutations. In vivo competition 
studies further demonstrate that sequences re- 
sponsible for cell-cycle-dependent H4 transcrip- 
tion reside within Site I1 [Ramsey-Ewing et al., 
in press]. 

Proliferation-Differentiation Interrelationships 

A remodeling of histone gene promoter occu- 
pancy by transcription factors is evident post- 
proliferatively in cells initiating expression of 
genes supporting differentiation. Striking ex- 
amples are development of the monocytic, osteo- 
blastic, and adipocytic phenotypes. 

As indicated in Figures 2 and 3, with the 
down-regulation of proliferation during phorbol 
ester-induced differentiation of HL-60 promyelo- 
cytic leukemia cells into monocytes, a coordi- 
nate transcriptional repression of cell-cycle con- 

(thin arrow), or maximal levels (thick arrow) of transcription. 
Shutdown of H4-FOI 08 gene transcription at the cessation of 
proliferation (thin arrow covered by X) coincides with modifica- 
tions of protein/protein interactions at Site 111 and downregula- 
tion of Site I I  occupancy by i ts cognate factors. The contribution 
of phosphorylation to proteiniDNA interactions at Site II and 
protein/protein interactions at Site 111 are indicated. ATF, activat- 
ing transcription factor; NMP, nuclear matrix protein. 

trolled H4 [Stein et al., 19891, H2B [Collart et 
al., 19911 and H1 [Collart et al., 19881 genes is 
observed. Cessation of H4-F0108 gene transcrip- 
tion coincides with selective down-regulation of 
protein-DNA interactions at H4-Site I1 in vivo 
and persistent occupancy of H4-Site I [Stein et 
al., 19891. The vacancy of H4-Site I1 coincides 
with loss of in vitro binding of nuclear factor 
HiNF-D, with at least two factors (HiNF-C/Spl 
and HiNF-A/high mobility group-I) maintain- 
ing constitutive DNA-binding activity post- 
proliferatively during the onset of differentia- 
tion [van Wijnen et al., 19891. The correlation 
between down-regulation of cell proliferative ac- 
tivity, transcriptional down-regulation of his- 
tone gene expression, and loss of HiNF-D bind- 
ing activity has been confirmed in numerous cell 
culture systems, including differentiating pri- 
mary rat calvarial osteoblasts and mouse 3T3 
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pre-adipocytes [Stein et al., 19901, serum-de- 
prived CF-9 fibroblasts [Wright et al., 19921, as 
well as density-inhibited rat osteosarcoma cells 
[van den Ent et al., 1993; van den Ent et al., 
19941. Moreover, HiNF-D decreases in parallel 
with down-regulated expression of the cell-cycle 
controlled mouse H4 genes and at cessation of 
chimeric FO 108-reportergene gene transcrip- 
tion in transgenic mice during hepatic develop- 
ment [van Wijnen et al., 1991~1. 

Transcription Factor Phosphorylation 

A functional relationship between activity of 
DNA binding proteins and the extent to  which 
they are phosphorylated provides the potential 
basis for integrating cellular signaling mecha- 
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nisms involving protein kinases and phospha- 
tases with cell cycle-dependent control of tran- 
scription. Dephosphorylation affects protein- 
DNA interactions at both H4-Site I1 [van Wijnen 
et al., 1991bl and Site I11 [van der Houven van 
Oordt et al., 19921. At Site 11, dephosphorylation 
appears to modify interaction of both HiNF-D 
and HiNF-M binding to  DNA, whereas at  Site 
I11 protein-protein interactions may be involved. 
It remains to be formally established whether 
phosphorylation events are involved in H4 cell 
cycle regulation. 

ABROGATION OF GROWTH CONTROL 
IN TRANSFORMED AND TUMOR CELLS 

I S  REFLECTED BY DEREGULATION OF CELL 

FACTOR INTERACTIONS WITH HISTONE 
GENE PROMOTER ELEMENTS 

GROWTH-DEPENDENT TRANSCRIPTION 

In transformed and tumor cells the abroga- 
tion of growth control and proliferation-differen- 
tiation interrelationships is accompanied by 
modifications in protein-DNA interactions at two 
proximal histone gene promoter regulatory ele- 
ments (Fig. 4). The first is observed at Site 11. 
While in normal diploid cells HiNF-D binding at 

Fig. 4. A: Model of the relationship between proliferation and 
differentiation in normal diploid cells during the rat osteoblast 
developmental sequence and in osteosarcoma (transformed) 
cells. The top panel illustrates the reciprocal growth-differentia- 
tion relationship operative in normal diploid osteoblasts. The 
three principal developmental periods are designated (prolifera- 
tion, extracellular matrix maturation, and extracellular matrix 
mineralization). The lower panel schematically illustrates the 
deregulation of the relationship between growth and differentia- 
tion in transformed osteoblasts or osteosarcoma cells. The 
proliferation and differentiation vectors reflect the co-expres- 
sion of cell growth and bone tissue-specific genes. In contrast to 
normal diploid cells where expression of osteoblast phenotype 
markers is post-proliferative in transformed cells these genes 
are expressed constitutively. There is an absence of the two 
developmentally important transition points observed in nor- 
mal diploid cells: designated by broken vertical lines when 
proliferation is downregulated and at the onset of extracellular 
matrix mineralization. In osteosarcoma cells the concomitant 
expression of cell growth and tissue-specific genes reflects 
abrogation of growth control and the consequential deregula- 
tion of interrelationships between growth and differentiation. 
Several genes which are developmentally expressed during 
osteoblast differentiation are designated [Owen et al., 1990b; 
Lian et al., 1992; Stein and Lian, 19931. 6: Cellular levels of 
transcription factors during the cell cycle. The switch from 
stringent cell-cycle regulated (S-phase restricted) occupancy at 
Site I1 of the histone gene promoter in normal diploid cells is 
schematically compared to constitutive occupancy at Site II 
during the cell cycle in transformed and tumor cells [Holthuis et 
al., 1991; Paulietal., 19871. 
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Site I1 is restricted to S-phase, protein-DNA 
interactions at Site I1 are constitutive during 
the cell cycle in rat osteosarcoma cells and in 
SV40 transformed human diploid fibroblasts 
[Holthuis et al., 19901. A similar requirement of 
the normal diploid phenotype for cell cycle- 
dependent occupancy of Site I1 by cognate tran- 
scription factors is observed in the analogous 
domains of the H3 and H1 histone gene promot- 
ers [van Wijnen et al., 1991dI. This suggests 
that the coordinate regulation of HiNF-D inter- 
actions with cell cycle regulatory domains of 
histone gene promoters is operative in normal 
diploid cells. Despite the observed cell cycle regu- 
lation of HiNF-D activity in normal diploid cells, 
compared with constitutive activity in tumor 
cells, both exhibit downregulation with the ces- 
sation of proliferation [van den Ent et al., 1993, 
1994; Owen et al., 1990a,bl. A principal varia- 
tion in promoter factor binding, reflecting the 
normal diploid versus transformed phenotypes, 
is the phosphorylation-dependent representa- 
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Fig. 5. Coordinate transcriptional control of three distinct 
histone (H4, H3, and H1) gene classes. The top panel is a 
schematic representation of the promoters of three typical H4 
(top), H3 (middle), and H1 (bottom) genes. Each promoter 
contains ubiquitous transcriptional elements and cognate fac- 
tors (e.g., ATF, SP-1, and CCAAT; the orientation of elements 
within the promoters are indicated by the open arrows) that are 
shared to various degrees between distinct histone genes, as 
well as gene-specific cell cycle control elements (e.g., H4-CCE 
and H1 -CCE) [Dalton and Wells, 1988; LaBella et al., 1989; van 
Wijnen et al., 1991 a,b; Ramsey et al., 19941. These promoter 
elements are contained within larger multi-partite gene- 
regulatory proteiniDNA interaction domains (e.g., in vivo ge- 
nomic proteiniDNA interaction domains H4-Sites l and II, and 
H3-Sites I and 11)  [Pauli et al., 1987, 19891. Apart from histone 
promoter factors recognizing short defined elements, the three 
histone H4, H3, and H1 gene promoters each interact with the 
cell cycle regulated nuclear factor HiNF-D (elongated rounded 
box); factor HiNF-D simultaneously recognizes heterogeneous 
arrangements of at least two sequence motifs (CA- and AC- 
boxes; not indicated) [van Wijnen et al., 1991 a,c; van den Ent et 
al., 19941. A subset of the AC-motifs strongly resemble the 
consensus sequence of the thymidine kinase nuclear factor Yi 
(Yi-box, black arrows) [Dou et al., 1991, 19921. The bottom 
panel represents an alignment of three AC-type recognition 
motifs of HiNF-D located in, respectively, HI, H3, and H4  
promoters [the large black dots represent specific methylation- 
contacts for HiNF-D; van den Ent et al., 19941. The three 
HiNF-D recognition elements strongly resemble the consensus 
Yi-motif [Dou et al., 1991 I providing evidence for coordinate 
regulation of S-phase related genes by a shared factor. The Yi 
motif is based on alignment of three in vitro protein/DNA 
interaction elements for factor Yi in the murine thymidine 
kinase promoter (MT-1, MT-2, and MT-3) [Dou et al., 19911. 
Similar motifs are also observed in the human thymidine kinase 
promoter and bind a Yi related factor [Li et al., 19931. 

a 
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EFJ 
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tion of H4UA1 or H4UAlB at Site 111. Here the 
observed differences in transcription factor com- 
plexes are accounted for by protein-protein inter- 
actions [van der Houven van Oordt et al., 19921. 
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COORDl NATE TRANSCRIPTIONAL CONTROL 

RELATED GENES 
OF HISTONE AND OTHER S-PHASE 

From a restricted perspective the concomi- 
tant expression during S-phase of core and H1 
histone genes necessitates an understanding of 
analogous regulatory mechanisms. The integra- 
tion of mechanisms controlling the coordinately 
regulated transcription of multiple histone genes 
involves several shared promoter-binding activi- 
ties, including both ubiquitous and histone gene- 
specific transcription factors [van Wijnen et al., 
1991a; Ito et al., 1989; Dalton and Wells, 1988; 
Gallinari et al., 1989; van Wijnen et al., 1991d; 
van den Ent et al., in press]. HiNF-D-related 
protein-DNA interactions are also represented 
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in H3 and H1 histone gene promoters [van Wij- 
nen et al., 1991d1, suggesting the possibility of 
coordinate transcription factor interactions regu- 
lating several histone gene classes (Fig. 5). 

In a broader biological context there are simi- 
larities of histone gene Site I1 sequences with 
those in the proximal promoter of the thymidine 
kinase gene which exhibits enhanced transcrip- 
tion during S-phase (Fig. 5) [Coppock and Par- 
dee, 1987; Sherley and Kelly, 1988; Knight et 
al., 1989; Dou et al., 19911. The possibility may 
therefore be considered that genes functionally 
related to DNA replication may at least be in 
part coordinately controlled. Support for such a 
mechanism is provided by recent observations 
that both the cell cycle-regulated H4 histone 
gene (van Wijnen A, Grana-Amat X, Giordano A, 
Lian J, Stein J, Stein G, unpublished results) 
and the analogous promoter domain of the thy- 
midine kinase gene [Dou et al., 1992; Li et al., 
19931 supports sequence-specific interactions 
with cdc2 and Rb-related protein complexes. 
Here, we should not dismiss the possibility that 
a mechanism may be operative where cell cycle 
control (transitions from GI + S + G,) and mi- 
totic control are interrelated at histone and thy- 
midine kinase promoters by cyclin-related phos- 
phorylation (Fig. 6). 

NUCLEAR STRUCTU RE-H ISTON E CEN E 
TRANSCRIPTION INTERRELATIONSHIPS: 

A synergistic contribution of activities by Sites 
I, 11, 111, and IV H4 histone gene promoter 
elements to  the timing and extent of H4-FO108 
gene transcription has been established experi- 
mentally [Kroeger et al., 1987; Wright et al., 
1992; Ramsey-Ewing et al., in press; Wright et 
al., submitted]. The integration of intracellular 
signals that act independently upon these mul- 
tiple elements may partly reside in the three- 
dimensional organization of the promoter within 
the spatial context of nuclear architecture (Fig. 
7). A nuclear matrix attachment site has been 
identified in the upstream region (-0.8 kB) of 
the H4-F0108 gene promoter [Dworetzky et al., 
19921, which may serve two functions: imposing 
constraints on chromatin structure, and concen- 
trating and localizing transcription factors. Such 
a role for the nuclear matrix in regulation of 
histone gene expression is supported by distinct 
modifications in the composition of nuclear ma- 
trix proteins observed when proliferation-spe- 
cific genes are down-regulated during differen- 
tia- 

Interrelationships between cyclins and 
key transition periods during the cell cycle 
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Fig. 6. Interrelationships between cell cycle progression (in- 
ner circle) and periodicity of cyclin association with cyclin- 
dependent kinases (outer circle). The bottom component of the 
figure is a linear representation of the cell cycle with the C,,/C,, 
C,/S, SIC*, and G*/M transition points indicated. The arrows 
reflect cell cycle stages when the principal cyclins and cyclin- 
dependent kinases are observed at maximum levels. Also indi- 
cated are changes in the phosphorylation state of RB and the 
cell cycle dependent representation of HiNF-D binding activity. 

tion [Dworetzky et al., 19901 and, more directly, 
by the isolation of a unique ATF transcription 
factor from the nuclear matrix [Dworetzky et 
al., 19921, which interacts with Site IV of the 
H4-F0108 gene promoter. The presence of 
nucleosomes in the H4 promoter [Moreno et al., 
1986; Chrysogelos et al., 19851 (Fig. 7) may 
serve to increase the proximity of independent 
regulatory elements, and supports synergistic 
and/or antagonistic cooperative interactions be- 
tween histone gene DNA binding activities. In 
addition, chromatin structure and nucleosomal 
organization varies as a function of the cell cycle 
[Moreno et al., 1986; Chrysogelos et al., 19891, 
which may enhance and restrict accessibility of 
transcription factors, and modulate the extent 
to which DNA-bound factors are phosphory- 
lated. The specific mechanisms by which the 5’ 
histone gene promoter regulatory elements and 
sequence-specific transactivating factors partici- 
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Fig. 7. Spatial integration of intra- and extra-cellular signals 
modulating H4-FO108 gene transcription by reversible alter- 
ations in chromatin structure and nucleosomal organization of 
the promoter. Shown is a schematic representation of a model 
for the three dimensional organization of the H4-FO108 pro- 
moter depicting a relationship of distal and proximal protein/ 
DNA interaction sites when H4-FO108 promoter DNA (solid 
black line) is packaged into nucleosomes (ovals). Indicated are 
possible cooperative and/or mutually exclusive higher-order 
nucleoprotein interactions (arrows) between various DNA bound 
trans-acting factors (see Fig. 2 for symbols). The presence of a 
putative attachment site (Site IV) with the nuclear matrix (net- 
work of lines) containing matrix associated sequence-specific 
DNA binding proteins (rounded boxes filled with alternative 
symbols), provides a basis for restricted mobility of the pro- 
moter to a confined position within the nucleus as well as for 
the concentration, localization, and targeting of transcription 
factors. ATF, activating transcription factor; HiNF, histone 
nuclear factor; NMP, nuclear matrix protein. 

pate in regulating transcription of the histone 
H4-F0108 gene remain to be determined. How- 
ever, regulation is unquestionably operative 
within the context of the complex series of spa- 
tial interactions, which are responsive to a broad 
spectrum of biological signals. 
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